资源类型

期刊论文 1249

会议视频 14

年份

2024 2

2023 84

2022 95

2021 88

2020 88

2019 58

2018 58

2017 53

2016 50

2015 57

2014 58

2013 52

2012 55

2011 49

2010 61

2009 62

2008 66

2007 53

2006 30

2005 29

展开 ︾

关键词

数学模型 13

模型试验 9

数值模拟 8

模型 7

COVID-19 4

不确定性 4

GM(1 3

能源 3

计算机模拟 3

1)模型 2

DX桩 2

D区 2

Preissmann格式 2

SARS 2

TRIZ 2

Weibull分布 2

k-ε模型 2

临震信号 2

云模型 2

展开 ︾

检索范围:

排序: 展示方式:

三维宽浅河道水流数学模型研究

丁道扬,吴时强

《中国工程科学》 2010年 第12卷 第2期   页码 32-39

摘要:

针对宽浅河道水流的特点,建立了一个基于分层积分降维数值解法的三维浅水紊流数值模型。通过对弯道水流的验证计算,其计算成果和试验值能较好地吻合。笔者等建立的数学摸型特别适合用来解决宽浅河道及河口水流问题。

关键词: 三维水流模型     数值模拟     弯道     宽浅河道    

Land use/cover change effects on floods with different return periods: a case study of Beijing, China

Yueling WANG, Xiaoliu YANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第5期   页码 769-776 doi: 10.1007/s11783-013-0542-z

摘要: In this study, an approach integrating digital land use/cover change (LUCC) analysis, hydraulic modeling and statistical methods was applied to quantify the effect of LUCC on floods in terms of inundation extent, flood arrival time and maximum water depth. The study took Beijing as an example and analyzed five specific floods with return periods of 20-year, 50-year, 100-year, 1000-year and 10000-year on the basis of LUCC over a nine-year period from 1996 to 2004. The analysis reveals that 1) during the period of analysis Beijing experienced unprecedented LUCC; 2) LUCC can affect inundation extent and flood arrival time, and floods with longer return periods are more influenced; 3) LUCC can affect maximum water depth and floods with shorter return periods are more influenced; and 4) LUCC is a major flood security stressor for Beijing. It warns that those cities having experienced rapid expansion during recent decades in China are in danger of more serious floods and recommends that their actual land use patterns should be carefully assessed considering flood security. This integrated approach is demonstrated to be a useful tool for joint assessment, planning and management of land and water.

关键词: inundation extent     flood arrival time     maximum water depth     shallow flow model    

Mechanical responses of multi-layered ground due to shallow tunneling with arbitrary ground surface load

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 745-762 doi: 10.1007/s11709-023-0935-4

摘要: An analytical model based on complex variable theory is proposed to investigate ground responses due to shallow tunneling in multi-layered ground with an arbitrary ground surface load. The ground layers are assumed to be linear-elastic with full-stick contact between them. To solve the proposed multi-boundary problem, a series of analytic functions is introduced to accurately express the stresses and displacements contributed by different boundaries. Based on the principle of linear-elastic superposition, the multi-boundary problem is converted into a superposition of multiple single-boundary problems. The conformal mappings of different boundaries are independent of each other, which allows the stress and displacement fields to be obtained by the sum of components from each boundary. The analytical results are validated based on numerical and in situ monitoring results. The present model is superior to the classical model for analyzing ground responses of shallow tunneling in multi-layered ground; thus, it can be used with assurance to estimate the ground movement and surface building safety of shallow tunnel constructions beneath surface buildings. Moreover, the solution for the ground stress distribution can be used to estimate the safety of a single-layer composite ground.

关键词: analytical model     mechanical response     multi-layered ground     shallow tunneling     ground surface load     complex variable solution    

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

《结构与土木工程前沿(英文)》 2014年 第8卷 第3期   页码 237-251 doi: 10.1007/s11709-014-0242-1

摘要: Geotechnical uncertainties may play crucial role in response prediction of a structure with substantial soil-foundation-structure-interaction (SFSI) effects. Since the behavior of a soil-foundation system may significantly alter the response of the structure supported by it, and consequently several design decisions, it is extremely important to identify and characterize the relevant parameters. Moreover, the modeling approach and the parameters required for the modeling are also critically important for the response prediction. The present work intends to investigate the effect of soil and model parameter uncertainty on the response of shallow foundation-structure systems resting on dry dense sand. The SFSI is modeled using a beam-on-nonlinear-winkler-foundation (BNWF) concept, where soil beneath the foundation is assumed to be an assembly of discrete, nonlinear elements composed of springs, dashpots and gap elements. The sensitivity of both soil and model input parameters on shallow foundation responses are investigated using first-order second-moment (FOSM) analysis and Monte Carlo simulation through Latin hypercube sampling technique. It has been observed that the degree of accuracy in predicting the responses of the shallow foundation is highly sensitive soil parameters, such as friction angle, Poisson’s ratio and shear modulus, rather than model parameters, such as stiffness intensity ratio and spring spacing; indicating the importance of proper characterization of soil parameters for reliable soil-foundation response analysis.

关键词: shallow foun dation     sensitivity analysis     centrifuge data     first-order-second-moment (FOSM) method     parameter uncertainty    

Theoretical study on flow and radiation in tubular solar photocatalytic reactor

《能源前沿(英文)》 2021年 第15卷 第3期   页码 687-699 doi: 10.1007/s11708-021-0773-9

摘要: In this paper, based on the mixture flow model, an optimized six-flux model is first established and applied to the tubular solar photocatalytic reactor. Parameters influencing photocatalyst distribution and radiation distribution at the reactor outlet, viz. catalyst concentration and circulation speed, are also analyzed. It is found that, at the outlet of the reactor, the optimized six-flux model has better performances (the energy increase by 1900% and 284%, respectively) with a higher catalyst concentration (triple) and a lower speed (one third).

关键词: photocatalytic hydrogen photoreactor     nume- rical simulation     solar energy     flow model     radiation model    

Decontamination efficiency and root structure change in the plant-intercropping model in vertical-flow

Yonghua CHEN, Xiaofu WU, Mingli CHEN, Kelin LI, Jing PENG, Peng ZHAN

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 906-912 doi: 10.1007/s11783-013-0579-z

摘要: Subtropical climatic conditions can contribute to the death of the aerial parts of constructed wetland plants in winter. This presents a barrier to the widespread application of constructed wetland and is an issue that urgently needs to be solved. Three contrasting experiments, the plant-intercropping model (A), the warm-seasonal plant model (B), and the non-plant model (C), were studied in terms of their efficiency in removing pollutants, and the change in root structure of plants in the plant-intercropping model within the vertical-flow constructed wetlands. The results indicate that model A was able to solve the aforementioned problem. Overall, average removal rates of three pollutants (COD , total nitrogen (TN) and total phosphorous (TP)) using model A were significantly higher than those obtained using models B and C ( <0.01). Moreover, no significant differences in removal rates of the three pollutants were detected between A and B during the higher temperature part of the year ( >0.05). Conversely, removal rates of the three pollutants were found to be significantly higher using model A than those observed using model B during the lower temperature part of the year ( <0.01). Furthermore, the morphologies and internal structures of plant roots further demonstrate that numerous white roots, whose distribution in soil was generally shallow, extend further under model A. The roots of these aquatic plants have an aerenchyma structure composed of parenchyma cells, therefore, roots of the cold-seasonal plants with major growth advantages used in A were capable of creating a more favorable vertical-flow constructed wetlands media-microenvironment. In conclusion, the plant-intercropping model (A) is more suitable for use in the cold environment experienced by constructed wetland during winter.

关键词: vertical-flow constructed wetlands     plant intercropping model     warm seasonal plant model    

Multi-class dynamic network traffic flow propagation model with physical queues

Yanfeng LI, Jun LI

《工程管理前沿(英文)》 2017年 第4卷 第4期   页码 399-407 doi: 10.15302/J-FEM-2017041

摘要: This paper proposes an improved multi-class dynamic network traffic flow propagation model with a consideration of physical queues. Each link is divided into two areas: Free flow area and queue area. The vehicles of the same class are assumed to satisfy the first-in-first-out (FIFO) principle on the whole link, and the vehicles of the different classes also follow FIFO in the queue area but not in the free flow area. To characterize this phenomenon by numerical methods, the improved model is directly formulated in discrete time space. Numerical examples are developed to illustrate the unrealistic flows of the existing model and the performance of the improved model. This analysis can more realistically capture the traffic flow propagation, such as interactions between multi-class traffic flows, and the dynamic traffic interactions across multiple links.

关键词: first-in-first-out (FIFO)     multi-class traffic     physical queues     traffic flow modeling    

A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir

Jian GUO, Wenjiong CAO, Yiwei WANG, Fangming JIANG

《能源前沿(英文)》 2019年 第13卷 第1期   页码 99-106 doi: 10.1007/s11708-018-0555-1

摘要: The fracture characteristics of a heat reservoir are of critical importance to enhanced geothermal systems, which can be investigated by theoretical modeling. This paper presents the development of a novel flow-resistor network model to describe the hydraulic processes in heat reservoirs. The fractures in the reservoir are simplified by using flow resistors and the typically complicated fracture network of the heat reservoir is converted into a flow-resistor network with a reasonably simple pattern. For heat reservoirs with various fracture configurations, the corresponding flow-resistor networks are identical in terms of framework though the networks may have different section numbers and the flow resistors may have different values. In this paper, numerous cases of different section numbers and resistor values are calculated and the results indicate that the total number of flow resistances between the injection and production wells is primarily determined by the number of fractures in the reservoir. It is also observed that a linear dependence of the total flow resistance on the number of fractures and the relation is obtained by the best fit of the calculation results. Besides, it performs a case study dealing with the Soultz enhanced geothermal system (EGS). In addition, the fracture numbers underneath specific well systems are derived. The results provide insight on the tortuosity of the flow path between different wells.

关键词: enhanced geothermal systems     flow-resistor network model     fracture characteristics     heat reservoir    

Microdamage study of granite under thermomechanical coupling based on the particle flow code

《结构与土木工程前沿(英文)》   页码 1413-1427 doi: 10.1007/s11709-023-0953-2

摘要: The thermomechanical coupling of rocks refers to the interaction between the mechanical and thermodynamic behaviors of rocks induced by temperature changes. The study of this coupling interaction is essential for understanding the mechanical and thermodynamic properties of the surrounding rocks in underground engineering. In this study, an improved temperature-dependent linear parallel bond model is introduced under the framework of a particle flow simulation. A series of numerical thermomechanical coupling tests are then conducted to calibrate the micro-parameters of the proposed model by considering the mechanical behavior of the rock under different thermomechanical loadings. Good agreement between the numerical results and experimental data are obtained, particularly in terms of the compression, tension, and elastic responses of granite. With this improved model, the thermodynamic response and underlying cracking behavior of a deep-buried tunnel under different thermal loading conditions are investigated and discussed in detail.

关键词: thermomechanical coupling effect     granite     improved linear parallel bond model     thermal property     particle flow code    

低高宽比矩形微通道中流动沸腾的压降特性

张炳雷,徐进良,肖泽军

《中国工程科学》 2007年 第9卷 第12期   页码 86-93

摘要: 以甲醇为工质,在不同进口温度、质量流率、热流密度和倾角下,对低高宽比矩形微通道中流动沸腾压降特性进行了研究,并分别采用均相模型和分相模型对通道压降进行了计算。通过对比实验结果与计算结果发现,均相模型中两相平均粘度的计算应当采用Dukler公式,用其他计算式时误差较大;利用LockhartMartinelli关系式进行的分相模型计算发现,现有C值计算公式,如Chisholm,Lee and Lee,Mishima及Qu and Mudawar等,都不能用于预测该实验中低高宽比微通道的两相压降。实验发现当通

关键词: 压降特性;均相模型;分相模型;微通道;流动沸腾    

Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller

Zhiyi YU, Guoyu WANG, Shuliang CAO

《机械工程前沿(英文)》 2009年 第4卷 第1期   页码 53-59 doi: 10.1007/s11465-009-0006-0

摘要: This paper presents an extended two-fluid model based on the Navier-Stokes equations and the standard turbulence model, to simulate the three-dimensional air-water bubbly flow in turbo machinery. In the governing equations, the drag force and added mass force are added and the additional source terms arising from fluctuations of gas volume fraction are considered. The discrete equations are solved using a developed two-phase semi-implicit method for pressure-linked equations, consistent (SIMPLEC) algorithm in body-fitted coordinates with a staggered grid system. Simulation is then carried out for the pure liquid flow and air-water two-phase flow with the inlet gas volume fraction being 15% in a multiphase rotodynamic pump impeller and the pump head performance is predicted. Comparison with experimental results shows the reliability and commonality of the numerical model.

关键词: two-fluid model     multiphase rotodynamic pump     SIMPLEC algorithm     numerical simulation    

Comparison of shallow tunneling method with pile and rib method for construction of subway station in

Sina AMIRI; Ali Naghi DEHGHAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 704-717 doi: 10.1007/s11709-021-0746-4

摘要: In the present study, a comparison between the new shallow tunneling method (STM) and the traditional pile and rib method (PRM) was conducted to excavate and construct subway stations in the geological conditions of Tehran. First, by selecting Station Z6 located in the Tehran Subway Line 6 as a case study, the construction process was analyzed by PRM. The maximum ground settlement of 29.84 mm obtained from this method was related to the station axis, and it was within the allowable settlement limit of 30 mm. The acceptable agreement between the results of numerical modeling and instrumentation data indicated the confirmation and accuracy of the excavation and construction process of Station Z6 by PRM. In the next stage, based on the numerical model validated by instrumentation data, the value of the ground surface settlement was investigated during the station excavation and construction by STM. The results obtained from STM showed a significant reduction in the ground surface settlement compared to PRM. The maximum settlement obtained from STM was 6.09 mm as related to the front of the excavation face. Also, the sensitivity analysis results denoted that in addition to controlling the surface settlement by STM, it is possible to optimize some critical geometric parameters of the support system during the station excavation and construction.

关键词: shallow tunneling method     pile and rib method     ground surface settlement     subway station construction     numerical modeling    

Centrifuge experiments for shallow tunnels at active reverse fault intersection

Mehdi SABAGH, Abbas GHALANDARZADEH

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 731-745 doi: 10.1007/s11709-020-0614-7

摘要: Tunnels extend in large stretches with continuous lengths of up to hundreds of kilometers which are vulnerable to faulting in earthquake-prone areas. Assessing the interaction of soil and tunnel at an intersection with an active fault during an earthquake can be a beneficial guideline for tunnel design engineers. Here, a series of 4 centrifuge tests are planned and tested on continuous tunnels. Dip-slip surface faulting in reverse mechanism of 60-degree is modeled by a fault simulator box in a quasi-static manner. Failure mechanism, progression and locations of damages to the tunnels are assessed through a gradual increase in Permanent Ground Displacement (PGD). The ground surface deformations and strains, fault surface trace, fault scarp and the sinkhole caused by fault movement are observed here. These ground surface deformations are major threats to stability, safety and serviceability of the structures. According to the observations, the modeled tunnels are vulnerable to reverse fault rupture and but the functionality loss is not abrupt, and the tunnel will be able to tolerate some fault displacements. By monitoring the progress of damage states by increasing PGD, the fragility curves corresponding to each damage state were plotted and interpreted in related figures.

关键词: reverse fault rupture     continuous tunnel     geotechnical centrifuge     ground surface deformations     fragility curves    

Strategic Thinking on Shallow-water Oil and Gas Exploration in Offshore China

Ke-qiang Wu,Jian-yong Xu,Bo Kang

《工程管理前沿(英文)》 2016年 第3卷 第4期   页码 349-355 doi: 10.15302/J-FEM-2016056

摘要: The oil and gas exploration in offshore China has made great achievements, and as the important areas of offshore exploration, the shallow waters contribute most of the oil and gas reserves and production. However, the available area for exploration is diminishing and the cost of exploration is rising. The field changes and ever increasing difficulties of exploration bring new challenges technically and economically. Therefore, for effective exploration of shallow-water oil and gas in offshore China, it is necessary to center on the general requirements of becoming a powerful marine country and the ideas of value exploration, initiate key research projects in the fields of China’s offshore stratigraphic-lithologic reserves, Paleogene reserves, buried-hill reserves, high temperature and pressure reserves and hydrocarbon-rich sags, and form geological theories and explorative technologies of large and medium size oil and gas field in offshore China. The measures regarding the challenges include: (1) Innovating theoretical understanding and optimizing new exploration fields, (2) developing technical capabilities and improving the success rate of exploration, and (3) enhancing management level and deepening value exploration.

关键词: offshore China     shallow-water oil and gas exploration     strategic thinking     challenge     countermeasure    

Analysis of flow over backward facing step with transition

Dwarikanath RATHA,Arindam SARKAR

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 71-81 doi: 10.1007/s11709-014-0270-x

摘要: The present study deals with the study of the velocity distribution and the separation phenomenon of flow of air over a two dimensional backward facing step. The flow of air over a backward facing step has been investigated numerically using FLUENT. Flow simulation has been carried out in a backward facing step having an expansion ratio (ratio of the height before and after the step) of 1:1.94 and the results obtained are compared with the published experimental results. Comparison of flow characteristics between steps with three different transitions is made. The variation of reattachment length for all the three cases are analyzed for wide range of Reynolds number ranging from 100 to 7000 which covers the laminar, transition and turbulent flow of air. Simulation of the flow over steps with expansion ratios of 1:1.24, 1:1.38, 1:1.47, 1:1.53, 1:1.94, 1:2.20 are also carried out to examine the effect of different expansion ratios on the reattachment length. It is found that the primary reattachment length increases with increase in the expansion ratio. The primary reattachment length at the bottom wall downstream of the step is minimum for the step with round edged transition and maximum for the step with a vertical drop transition.

关键词: Reattachment length     backward facing step     transition     flow separation     k-? model    

标题 作者 时间 类型 操作

三维宽浅河道水流数学模型研究

丁道扬,吴时强

期刊论文

Land use/cover change effects on floods with different return periods: a case study of Beijing, China

Yueling WANG, Xiaoliu YANG

期刊论文

Mechanical responses of multi-layered ground due to shallow tunneling with arbitrary ground surface load

期刊论文

Shallow foundation response variability due to soil and model parameter uncertainty

Prishati RAYCHOWDHURY,Sumit JINDAL

期刊论文

Theoretical study on flow and radiation in tubular solar photocatalytic reactor

期刊论文

Decontamination efficiency and root structure change in the plant-intercropping model in vertical-flow

Yonghua CHEN, Xiaofu WU, Mingli CHEN, Kelin LI, Jing PENG, Peng ZHAN

期刊论文

Multi-class dynamic network traffic flow propagation model with physical queues

Yanfeng LI, Jun LI

期刊论文

A novel flow-resistor network model for characterizing enhanced geothermal system heat reservoir

Jian GUO, Wenjiong CAO, Yiwei WANG, Fangming JIANG

期刊论文

Microdamage study of granite under thermomechanical coupling based on the particle flow code

期刊论文

低高宽比矩形微通道中流动沸腾的压降特性

张炳雷,徐进良,肖泽军

期刊论文

Extended two-fluid model applied to analysis of bubbly flow in multiphase rotodynamic pump impeller

Zhiyi YU, Guoyu WANG, Shuliang CAO

期刊论文

Comparison of shallow tunneling method with pile and rib method for construction of subway station in

Sina AMIRI; Ali Naghi DEHGHAN

期刊论文

Centrifuge experiments for shallow tunnels at active reverse fault intersection

Mehdi SABAGH, Abbas GHALANDARZADEH

期刊论文

Strategic Thinking on Shallow-water Oil and Gas Exploration in Offshore China

Ke-qiang Wu,Jian-yong Xu,Bo Kang

期刊论文

Analysis of flow over backward facing step with transition

Dwarikanath RATHA,Arindam SARKAR

期刊论文